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INTERACTION OF OBLIQUE SHOCK WAVES WITH REGIONS OF 

VARIABLE PRESSURE, ENTROPY, AND ENERGY 

By W. E. Moeckel 

SUMMARY 

Equations are derived for computing the form of an oblique shock 
wave as it passes through supersonic regions in which static pressure, 
stagnation pressure, stagnation temperature, or combinations of these 
are continuously variable. Rigorous portions of the analysis are limited 
to shock strengths for which the flow downstream of the shock remains 
supersonic. When no downstream waves other than those generated by 
the interaction process are present, the rate of change of shock angle 
with upstream Mach number is found to be a function only of the local 
shock angle and upstream Mach number;! hence, the propagation through 
a nonuniform region depends only on the initial shock strength and Mach 
number. A procedure is described for computing the supersonic portion 
of the flow field downstream of the shock wave. 

For the special cases of supersonic shear flow and Prandtl-Meyer 
flow, charts of the shock angle as a function of upstream Mach number 
are-~presented so that the passage of a shock wave through these types 
of nonuniform regions can be easily traced. For a prescribed initial 
shock strength and initial Mach number, a minimum upstream Mach number 
is found below which no physically realistic solution can be obtained 
with the equations for simple propagation. This result serves as a 
sufficient condition for the avoidance of separated flow, reversed 
flow, or other upstream effects. An example is computed of the propaga- 
tion of a shock wave through a wake-type supersonic shear profile and 
the flow field downstream of-the shock is constructed. 

INTRODUCTION 

The most frequently discussed example of the propagation of a 
shock wave into a nonuniform flow region appears, at present, to be 
the shock-wave boundary-layer interaction problem.  Although much 
theoretical and experimental research has been devoted to this problem, 
it is still unsolved in the sense that no method exists whereby the 
effect of a shock of prescribed strength on a boundary layer with 
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prescribed profile can be predicted. The difficulty in formulating a 
theoretical approach can be attributed chiefly to the fact that the 
flow upstream of the shock is not independent of the presence of the 
shock. If the subsonic portion of the boundary layer were removed 
(by continuous suction, for example), it might be expected that this 
difficulty would be eliminated.  Circumstances frequently arise, how- 
ever, for which even this expectation is not fulfilled.  It was shown 
qualitatively in reference 1, for example, that the presence of a 
supersonic wake upstream of a blunt body requires modification of the 
upstream flow in order that physically realistic pressure gradients „ 
can be obtained downstream of the detached shock. The fact that the N 

flow upstream of the shock is completely supersonic does not, therefore, 
guarantee that the upstream flow will be uninfluenced by the presence 

of the shock. 

In order to formulate criteria for determining whether or not the 
flow upstream of a shock is independent of the presence of the shock, 
it is first necessary to analyze the propagation of shock waves through 
regions in which upstream flow conditions are variable over a wide 
range.  Such an analysis was carried out for weak waves and for the 
particular case of a supersonic shear layer in reference 2. 

In the present report, the propagation of oblique shock waves of 
arbitrary strength through supersonic regions in which static pressure, 
stagnation pressure, stagnation temperature, or combinations of these 
are variable over wide ranges is considered. In addition to providing 
criteria for the avoidance of upstream effects of shock waves, the 
analysis provides a method for tracing shock waves through jets or wakes 
of known profile or through other types of flow with large nonuniformi- 
ties. An analysis of the propagation of weak waves in general nonuniform 
regions is also given, and a procedure is discussed for constructing 
the supersonic portion of the flow field downstream of shock waves or 
weak waves. This investigation was conducted at the NACA Lewis 

laboratory. 

ANALYSIS 

General Equations 

The interaction of a shock wave with a nonuniform supersonic stream 
is first discussed for the most general conditions feasible. The result- 
ing equations are then simplified for several special types of flow. 
Symbols used are defined in the appendix. 

For the most general case considered, the following assumptions 

are made: 
4 

(l) In the vicinity of the interaction region, effects of viscosity 
turbulence are negligible. This assumption permits use of nonviscous 
shock and flow equations. 
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(2) The flow is everywhere supersonic and, consequently, changes 
in pressure and flow direction take place only across shock waves or 
characteristic lines (Mach waves). 

(3) The flow field can he divided into stream tubes of small thick- 
ness.  Stagnation temperature T and ratio of specific heats y are 
constant in each stream tube but may change across the streamlines that 
bound each stream tube,  (if the static temperature, and consequently 
y, changes appreciably across the shock wave, an average value of y 
can be used for each stream tube with slight additional complication.) 

l 
(4) Stagnation pressure remains constant in each stream tube except 

when that stream tube passes through the shock wave. 

(5) Fluid properties upstream of the shock wave contain no large 
discontinuities,  (if this condition is not "imposed, the numerical work 
soon becomes prohibitively lengthy. Evaluation of the exact solution 
at the point of impingement of a shock wave on a contact surface that 
separates fluids whose properties differ by large amounts is discussed 
in references 3 and 4.) 

With the preceding assumptions, the wave and streamline pattern 
near a point on the shock wave in the nonuniform flow field can be 
represented as in sketch 1.  Lines Oa and Oc are incident waves or 
characteristics upstream of the shock; line Og is an incident wave or 
characteristic in the downstream field; and Of is a reflected wave or 
characteristic.  Static pressure and flow direction may change across 

any characteristic or across 
c        ^       /d        the shock wave; stagnation 

pressure can change across 
any streamline or across 
the shock wave; and stagna- 
tion temperature and speci- 
fic heat can change across 
any streamline. Assump- 
tions (3) and (5) imply that 
all waves except the shock 
wave are sufficiently weak 
so that the relation between 
flow deflection and pressure 
change across the wave satis- 
fies the weak-wave equation: 

Shock 
Characteristic 
Streamline 

P 
yMc 

fM^-1 
(X'-X) (1) 

where primes represent down- 
stream values and unprimed 
symbols denote upstream 

Sketch 1 
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values. The plus and minus signs are used, respectively, for waves 
whose slope is positive or negative in sketch 1. All waves except the 
shock wave are inclined at the local Mach angle relative to the local 
^low direction. 

The following relations between values upstream of a shock (unprimed) 
and values downstream of the shock (primed) are required for the analysis 
(see reference 5): 

P' = f^M,"»"^) - —^T M2sin2<J> - £ 
- 1 

X + 1 x + 1 
(2) in 

X'- X = f2(M,r>f) - tan' -1 M sin <P cos <p -  cot (p 

1 + M2 fl±J, _  sin2^ 
(3) 

f3(M,r,<p) = 
TM ,2 

/M ,2 
(4) 

where 

.2       (r + lj^sin2?  - 4(M2sin2<t> - l)(yM2sin2(p + l) 
M'^ a 

[2rM2sin2<P-   (r - 1)]  C(r - l)M2sin2<P + 2] 
(5) 

The equations relating the quantities in each of the several 
regions of sketch 1 are derived with reference to the numbering shown 

in sketch 2, which is 
an expanded version of 
the vicinity of point 0 
in sketch 1. The waves 
and the streamline 
separate the flow near 
point 0 into eight 
regions, in each of 
which all fluid proper- 
ties are constant.  Con- 
ditions in the upstream 
regions 1, 2, 3, and 8 
are known; and the inci- 
dent shock angle <pg is 

known. From the shock 
equations, conditions in 
region 7 are determined 
by <P8, M8, and r8- 

The unknowns are $3 

Sketch 
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and conditions in regions 4, 5, and 6. Since pressure and flow angle 
are constant across streamlines, the following relations exist among 
the pressures and the flow angles: 

X4=X5 (6) 

oi 
CO 
-j 

P4 a ^5 £§ £7 ^8 
P3  P6 P7 P8 P3 

(?) 

Substitution from equations (l), (2), (3), (4), and (6) into equation (7) 
yields 

fiC%.r3,i^) i-AlH-V V^ 
[1 + f3(M8,r8,»8)(>6 - S)]

fiCM8»r8,f8) ^ Ce) 

But from equation (3) 

X4 " X3 + f2(M3^3^3) (9) 

x7 a x8 + *2&8>ra>*a) 

Hence, equation (8) becomes 

(10) 

f1(%,r3,<P3) 
rB*e 

V«6 
^3 " h + f2(M3'r3,fl>3} {1 + f3CMs>r8,»8)[>6 ' 

x8 - f2CM8'r8^8]jf1(M8)r8,i>8) ^   (11) 

All quantities in equation (ll) are known except <P~, Mg, and Xg. if 

waves of type Og in sketch 2 can he eliminated from the problem, the 
solution is greatly simplified, since then X„ « X  and M„ = M„: and 

of        b    / 

the only remaining unknown is the transmitted-shock angle <P3.  Condir 

tions under which waves of type Og can be neglected can be ascertained 
with the aid of the following sketches: 
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Sketch 3(a). Sketch 3("b). 

In sketch 3(a) waves of type Og are generated by the object that 
produces the shock wave and reach the shock before it passes through 
the nonuniform flow region. For this case, therefore, this type of 
incident wave is obviously not negligible. In sketch 3(b), on the other 
hand, waves of type Og that originate on, or are reflected from, the 
object reach the shock only after it has passed through the nonuniform 
region. There remains the possibility, however, (as illustrated in 
sketch 3(b)) that waves reflected within the nonuniform field itself 
will approach and appreciably influence the shock form before the shock 
leaves the nonuniform flow region.  Conditions for which these waves 
are negligible can be determined by an analysis of the strength of the 
wave of type Og that separates regions 2 and 3 in sketch 3(b) relative 
to the strength of the wave of type Of that separates regions 1 and 2. 
Thus, in sketch 3(b), since p4 -  p3, p5 = P]_, ^3 - ^4; 

use of equation (l) yields (with 

and Xl = 

(• 

rM* 

VM^ 
« f(M) 

') 

v5> 

(h ~ VOW  + ?(*%)-f(M2)   ftMjKXg -  \L)>   (*2 - H)[f(Ml) -fM 

from which is obtained 

f(Mx)   - f(M5) Af 
\-\~ f(Mg)  + f(M5)   -  f(Mx)   f(M2)(\5 - \)       (2  -  fA\)f 

■ -:^ 
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Consequently, waves of type Og, if they arise from internal reflection 
In the region of nonuniform flow, can be neglected without serious error 

*      if fAX« 2, where_ AX can be interpreted as the_strength of the strong- 
est wave of type Of. Since the strength of the Of waves is determined 
by the magnitude of the discontinuities upstream of the shock wave, this 
criterion, in effect, specifies the magnitude of the upstream discontinu- 
ities that can be tolerated if equation (ll) is to be simplified. It 
will be assumed throughout the remainder of the report that the upstream 

en      ' flow satisfies this requirement, and that consequently M6 and Xg can 

"J    -  be set equal to M7 and X?, respectively, if no waves other than those 

resulting from shock_propagation are present. The modifications required 
when waves of type Og other than those resulting from internal reflec- 
tion are present are considered in the section DISCUSSION AND APPLICATION. 

•  If X„ a X_ and Mc - M_, equations (8) or (ll) become 
6 I o I 

5'»3J 
= I1 ■ ^Wsl [X3 " X8 + ^Ws* ■ f2ÖJ8'r8'»eJ]} fl0«8'r8'»8> 

Since changes in flow variables from one stream tube to the next 
have been assumed small, functions of M3, <P3, and y3 differ only 

slightly from the same functions of MQ, <PQ, and r8- Consequently, let 

fn(M3,<P3,r3) * 
fnCM8^8^s) + ^n   £n = 1>2'3)        ^ 

and let 

p3 = p8 + dp 

X3 a Xg + dX 

(14) 

Equation (12) then becomes 

f x + df 1 - 
P8 

P8 + dP 
f 1 C1 - f3CdX + ^28 

-1-f fi" fxf3(dX + df2)] (15) 

where the differentials correspond to changes in quantities upstream 
of the shock wave from one stream tube to the next in the direction of 
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propagation of the shock wave. If only first-order differential terms 
are retained, equation (l5) becomes 

dfn dp 
—±- - f3(d\+ df2) --* (16) 

But 

dfn dM 
d<P     \ÖM   ör dM^ 

'^£2 + 5£2 dA m 
,ÖM   ör dM/ 

*\ 

df? 
df 0 = —- dcp + 

^  dtp 

dX 
> (17) 

dX» -^ dM 

dM J 

Hence,  equation (l6) becomes 

1 pfi + 
öfi dT\ 

d<p           fl \ÖM        ör    dM/ 

föf2      öf2 dr      dX\     1 dp 
6 \oM        by    dM      dM/      p dM 

dM 1   öf-L             öf2 

fx d<p         3äf 

(18) 

r- 
(M 

CM 

All quantities in the right member of equation (18) depend only 
on conditions upstream of the shock wave; hence, if the variations of 
X)  X, and p with upstream Mach number are specified (as they will be 
if upstream conditions are known), then the rate of change of shock 
angle with upstream Mach number is a function only of <p- and M. For 
any initial shock angle, and for arbitrary (but continuous) upstream 
Mach number distribution, equation (18) can therefore be integrated to 
obtain the form of the shock wave in regions of nonuniform supersonic 
flow. For discontinuous, but small, changes in upstream conditions, 
equation (18) must be evaluated in a step-by-step manner from one 
discontinuity to the next.  The validity of equation (18) is limited, 
to shock waves for which the flow downstream is supersonic and to 
segments of the shock wave that are free of interaction with downstream i 
incident waves other than those resulting from the propagation process. 

The partial derivatives required in equation (18) as evaluated from 
equations (2) and (3) are: 
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ro 
en 
CO 

_1_ ^£l 4yM sin2q) 
fl ÖM        2TM2sin2cp -   (r - 1) 

1   °fl     ,  4yM2sin <P cos cp 
fl ö(p       ?rM2sin2q> -   (r - l) 

1   öfi 2(M2sin2<P - l) 

1 °r        (r + l)   [2rM2sin2<P -   (r - lfl 

öf2 (r + l)M cot  (p 

dM     r /   . -, vn 2 

Ö£2 

ä cp 

1 + M2 f-^-| sin2<pj       + cot2<p (M2sin2(p - l)2 

1 + (r + 1    - 2 sin2^ M2 + (r+1 - x sin2<p] t^sin2? 

2<p^   1 + M2 \J+ 1 -  sin2<p)       + cot2cp (M2sin2<p - l)2 

öf2 - |    cot  <p (M2sin2<p - 1) 

1 + M2 fr + 1 - slnZ(p\I    + cot2<p (M2sin2(p - l): 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

Special Cases 

Supersonic shear flow. - If flow angle, static pressure, and ratio 
of specific heats are constant immediately upstream of the shock, equa- 
tion (18) reduces to N       -. 

1.^1 2 

d(p    f! cM 
+ f3 3M~ 5 a _ r^—5B f4(M^}        5) 

f~[ cH>"   3 o^" 

A contour plot of dcp/dM as function of <p and M is shown in 
figure 1. Integral curves of figure 1 are presented in figure 2. The 
construction of these integral curves by an isocline method is aided 
by the fact that the curve of Mach angle against M (M sin <p = l)  is 
itself an integral curve of equation (25).  This fact can he deduced 
from equation (25), which reduces for this case to 
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(H) m.  ÜSL» „ _   / (26) 
WM sin<P =1      M     M^M

2 - 1 

which is exactly the slope of the curve M sin <P = 1.  Consequently, 
the slope of all integral curves at their intersection with an 
ft -  constant contour is the same as the slope of the M sin <p = 1 CO en 
curve at its intersection with that contour. -g 

The integral curves of figure 2 yield the variation of shock angle 
with upstream Mach number when the reflected wave from each differential 
interface is taken into account. For comparison, figure 2 also contains 
curves obtained with the assumption that these reflected waves are 
negligible and, hence, that the pressure ratio across the shock (or 
M sin cp (see equation (2)) remains constant as the shock passes through 
the shear region.  Since the slope of any M sin <p =* constant .curve is 
d<p/dM ~ -   (tan <p)/M, the curve f4(M, <p) « - (tan <P)/k (fig. 2) is the 
locus of points for which the slope of the integral curves is equal to 
the slope of the constant-pressure-ratio curves.  Comparison of the 
constant-pressure-ratio curves with the integral curves in figure 2 
shows that the pressure ratio across the shock decreases as upstream 
Mach number decreases in the region to the left of the curve 
?4.(M>f) ~ ~  (tan ^)M-    To tne right of this curve, pressure ratio 
increases as upstream Mach number decreases.  The intersection of this 
curve with the Mach angle curve at M » 1.41 agrees with a result 
obtained in reference 2 for the interaction of weak waves with parallel 
supersonic shear layers.  For a weak incident wave entering the region 
of decreasing Mach number, it was found that for M - -y/2    no reflected 
wave occured. The curve f^M,^) = - (tan <p)/M in figure 2 thus rep- 
resents a generalization of this result to the case of waves of arbitrary 
strength. 

For fairly weak shocks, the assumption that the pressure ratio 
across the shock remains constant through the shear region appears to 
be an adequate approximation.  For stronger shocks, however, the pres- 
sure gradient downstream of the shock can become quite large, and the 
actual shock angles may differ considerably from those obtained with 
the constant-pressure-ratio assumption. 

The integral curves of figure 2 cannot be constructed beyond the 
M' -  1 curve, since the reflected-wave concept used to derive these 
curves is meaningless if the downstream flow is subsonic. For this 
region (cp„ < cp < 90°), however, it should be approximately valid in 
certain cases to assume that the pressure immediately downstream of 
the shock is constant along the shock, particularly if the flow down- 
stream of the shock is expected to be almost parallel. A large.pressure 
gradient normal to the subsonic streamlines would be inconsistent with 

•■JA 
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the expected nearly parallel flow. Consequently, in order to compute 
the form of the shock for cp > <pg, the Integral curves of figure 2 can 
probably be extended to <p = 90° along curves of constant-pressure 
ratio with no significant error. 

CO 
or 
CO 

When such extensions are made, it is seen from figure 2 that for 
any initial Mach number and shock angle there exists a minimum upstream 
Mach number below which no shock solution is obtained.  If the Mach 
number profile of the shear region is such that the minimum Mach number 
is less than that for which a shock of specified initial strength can 
be traced through the region, some readjustment of the upstream flow 
appears to be required to obtain a solution that is physically realistic. 
For example, the situation shown in sketch 4 may be considered, wherein 

a shock of initial angle 

Shock wave 

»0" 

Sketch 4 

28.6  and initial 
Mach number of 3.0 enters 
a shear region in which 
the minimum Mach number 
is 1.2. From figure 2, the 
incident shock is found to 
become normal at M = 1.36. 
If the shock remained nor- 
mal from a to b, as 
indicated by the dotted 
extension of the shock, 
then the pressure ratio at 
b would be 1.52 as com- 
pared with the pressure 
ratio at a of 2.0. Since 
the normal shock implies 
initially parallel subsonic 
downstream flow, it seems 
unreasonable to expect that 
a pressure gradient normal 
to the streamlines such as 
required in sketch 4 will 
be established. 

A situation similar to that shown in sketch 4 was discussed in 
reference .1, where the modification required in the.shock form when a 
shear layer occurs ahead of a blunt body was considered. It was argued 
that the pressure near the base or center line of the shear layer could 
be increased to a magnitude compatible with that outside the shear 
layer only if the stagnation point moved upstream to the vicinity of 
the Shockwave. Hence, a separated-flow region was required ahead of 
the body to provide a mechanism for establishing pressure equilibrium 
in subsonic portions of the downstream flow. Although the nature of 
the modification required in the present case is less evident, the 
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formation of a separated-flow region with a consequent lambda shock 
outside of the shear layer appears to he the most likely possibility. 
In any event, the curves of figure 2 provide a criterion for determining 
whether simple propagation of a shock wave through the shear region 
can take place. If the shock can he traced through the shear region 
by means of figure 2, then the physical shock should correspond to that 
calculated. If, on the other hand, the shock cannot be traced through 
the shear layer, then a more complicated flow pattern will be obtained 
which may or may not involve reversed flow and flow separation.a This 
criterion yields no information, of course, on the magnitude of the        , N 
separation that may result if simple propagation is impossible. ^ 

Honuniform isentropic flow. - If the stagnation pressure upstream 
of the shock is constant, then from the isentropic flow relation 

p « P (i + ^*j 
JL. 
T-l 

there is obtained 

p dM       \     2    / 

If x    is also constant, equation (18) becomes 

(27) 

fl^r + f3 \w + dM;   ™ v + 
r
 '  X T 

d<p 
2      * 

dM ~ 1   öf-L*           öfg 

f1 öq>          3 d<P 

(28) 

Since the variation of X with M depends, in general, on the structure 
of the flow upstream of the shock, the profile of M and X must, in 
general, be specified to obtain the shock form from equation (28). For 
some types of flow, however, such as Prandtl-Meyer flow, the quantity 
dX/dM is a prescribed function of M so that equation (28) can be 
represented on a (p - M plot as for shear flow. Thus, for Prandtl- 
Meyer flow, since 

aSince spearated-flow regions unsupported by solid boundaries are 
not commonly observed experimentally, it may be helpful to point out 
that such regions can be maintained in equilibrium relative to the main 
stream by the high downstream pressure that is established in the sepa- 
rated region. The branched-shock configuration that results from flow 
separation can produce the required equilibrium conditions. 
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CO 
Ü1 
CO 
-J 

iX=^tan-^^l(M2-l) .  -1 1 + sxn  M + C M 

there is obtained 

A_     ±.T*?7I_ (29) 
dM M(I + 

r ~ 1 M2) 

and equation (28) becomes 

dtp 

1    äfl  .   .    öf2 
fx öM     3 3M~ 

dM 

fx ö<p    + f3 d<P 

 r —^r — = f5(M,<P) 
_1_^1 ^2 
f± öxp 3 ö«p (30) 

where the plus sign is used when dX/dM is positive and the minus 
sign when dX/dM is negative. 

Positive values of dX/dM correspond to interactions such as 
those shown in sketches 5(a) and 5(b); negative values occur for inter- 
actions such as those shown in sketches 5(c) and 5(d) and arise less 
frequently in practice than positive values. 

The compressive, or reversed, Prandtl-Meyer flow shown in 
sketches 5(b) and 5(d) is, of course, described by equation (29) only 
in regions in which the flow can be represented by a sequence of weak 
waves.  When the weak waves form an envelope shock of sufficient 
strength to produce notable entropy increases, the flow angle and Mach 
number are no longer related by the Prandtl-Meyer equation. , 

The first term of the right member of equation (30) is the value 
of d<p/dM for constant p, X, and y (equation (25)); the second 
term is the effect of static pressure and flow angle changes in Prandtl- 
Meyer flow.    I ' 

A contour plot of d<p/dM = f5(M,<p) for Prandtl-Meyer flow 

is shown in figure 3 for the case in which the shock is entering a 
region in which both X and M either increase or decrease 
(dX/dM >0).  The curve  sin<p = 1/M is again an integral curve of 
equation (30), since the last term in this equation is zero when (p is 
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v   \ A 
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S\\\ 
\x  \ 

CO 

(a)  Increasing   X    and    M   I — > 01 

/     / 
/ 

(b) Decreasing X and M f— > Oj 

/ 

(c) Decreasing X, increasing M 

\m      J 
Sketch 5. 

(d) Increasing  X, decreasing M 

\dM   J 
Types of interaction of shock vaves with Praridtl-Meyer 

flow regions. 

the Mach angle: Comparison of figures 1 and 3 shows that for most 
values of M and 9 the shock angle increases less rapidly with 
decreasing Mach number for Prandtl-Meyer flow than for shear flow. 

Integral curves of figure 3 are plotted in figure 4, together 
with several constant-pressure-ratio curves. It is seen that the 
assumption that pressure ratio across the shock remains constant in 
passing through the nonuniform region is even less valid for this case 
than for shear flow. For fairly weak shocks (X! -X < 10°), however, 
it is found that the integral curves follow quite closely curves of 
constant-flow deflection (constant f2). The integral curves for 

shear flow, on the other hand, followed curves of constant-pressure 
ratio more closely than curves of constant-flow deflection. For very 
weak waves, the two types of curves become indistinguishable. 
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The curve fs(M,<p) = - (tan <P)/M separates the region in which 

pressure ratio decreases with decreasing Mach number from the region 
in which pressure ratio increases as Mach number is reduced. This 
curve again intersects the Mach angle curve at M = -y/2. 

Strength Distribution for Weak Waves 

CO 
en 
ro 

As mentioned previously, an analysis of the interaction of weak 
waves with a supersonic shear flow was developed in reference 2. In 
this analysis, the assumptions were made (as in the preceding analysis 
of shock interaction) that the flow upstream of the wave was uninflu- 
enced by the presence of the wave and that this upstream flow could 
be divided into elementary stream tubes. An additional assumption 
was made that the Mach number in each stream tube was unchanged in 
passing through the wave, in the present section the interaction of 
a weak wave with more general nonuniform supersonic regions is consid- 
ered, and the assumption that the Mach number remains constant in each 
stream tube is omitted. 

A weak wave is herein defined as one across which pressure ratio 
and flow deflection are related by equation (l); When the upstream 

flow variables are specified, the 
local downstream flow variables 
are determined by means of a five- 
sector configuration (sketch 6) 
in which, since p3 « p^, the 

pressures are related by 

Incident 
weak wave 

— >.— 

/ 

P3 P2 

P2 Pi 
M £5 
P5 Pi 

(31) 

Sketch 6 

Use of equation (l) for the pres- 
sure ratios of equation (31) 
results in 

!+■ 
TlM2< 

.   VM? 

(x3-x2) 
1 

!-■ 

TlMi< 

_   V^ 
(V V 

1 

P5 

Pi 
1- 

r5%' 

_   VM? l 
(\-h) 

(32) 

As for the shock wave, an average value of y" instead of the upstream 
value can be used for each wave with slight additional complication. 
In this manner the variation of y with temperature can be taken into 
account as the computation proceeds. 
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Since all changes across the waves and across the streamlines are 

small,  let 

,    p5 = px + dP;L s  p + dp 

f (TI,M2) = f (n^) + 5f (n^i) s f + Bf 

* (rs.Ms) - f (r^) + df Cr^Mj = f + af 

where 

f(r,M) =   

Equation (32) can then he written (since *4 = 
x
3) 

^(t + K)(H-^^5-^^-^-^-^]-(1+^k-{f^Kh-^   (33) 

Let dX » X5 _ X1 and let 9 he the change in flow angle across the 

weak wave; then 

e - x2 - x1 

de= (x4.x5) - (x2. xl} 

e + de = x4 - x5 

Equation (33) now hecomes 

[i + (f + K)(fl + ae + ax - e)][i - «.] - (i + f) [i - (f + «)(« + «Ö| 

which, when rearranged, "becomes 

,4+£ (I + ¥)-«(I + T) 
+
 T 

+
 T]--

8
" 

+
 ? (I.-er-e«>-dx(i-*)(* + «> 

Neglect of all terms of higher order than the first yields 

f d9(2 - 0f) = - 6 df + (f - f dx)(l - of)       (34) 

in 
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Calculations show that f is less than 10.1 for 1.01 < M < 5.0. 
Consequently, in this range of Mach numbers/ if 0 is of the order 
of 1 , then 0f can be considered negligible compared with unity and 
equation (34) becomes 

do M _ df  _1_ 
6 2f  20f 

-J       reduces to 

d0     M2 - 2 dM2 

For the case of shear flow (dp =0, dr « 0, dX =* 0), equation (35) 

^2   A  2 (36) 
4(M^ - l) M2 

which is the result derived by a different process in reference 2 with 
the assumption that Mach number is constant in each stream tube. As 
pointed out in reference 2, it is readily shown from equation (36) that 
a weak incident wave entering a region of decreasing Mach number pro- 
duces a reflected wave of the same sense (compression or expansion) or 
opposite sense depending on whether M is less than or greater than 
-«/2. Integration of equation (36) yields, as in reference 2, 

± m Ho fu2 -  1 Al/4 r^ 

where subscript zero refers to any initial or specified values. The 
. 2   ,l/4, 

function (M - 1} ' /M is plotted in figure 5. For shear regions 
with large changes in Mach number, it is evident that the cumulative 
effect of the reflected- waves, which accounts for the change in 9 in 
the interaction process, is negligible only if the initial weak wave 
is itself negligible. 

For problems in which dp/p or d\ are of the same order as 
0 df, equation (35) must be used instead of equation (37). If the flow 
upstream of the weak wave is of the Prandtl-Meyer type, equation (35) 
becomes, by use of equations (27) and (29), 

1 d0      M2 - 2 yM      (l + l) 

Ö dM = " 2M(M2 - 1) " f1+ 2-|-l KA 20f        (38) 

where the plus sign corresponds to dX/dM > 0 (see sketches 5(a) 
and 5(b)).  Since an incident weak wave is everywhere inclined at the 
local Mach angle, interactions of the type shown in sketches 5(c) 
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and 5(d) do not occur in this case (d9 * 0 "because dM - 0). For 
the physically significant case (dX/dM > 0) equation (38) can be 
■written 

1 d£ 
6 dM 

M2 - 2 -M^± 
2M(M2 - 1)  0M f 1 + T  ~ 1 M2J 

(38a) 

This equation is easily integrated numerically for any prescribed 9Q 

and MQ. 

DISCUSSION AND APPLICATION 

Construction of downstream flow by stepwise process. - When the 
form of a shock wave in a nonuniform region has been determined by 
equation (18) or its corollaries, and when the resulting downstream 
flow is completely supersonic, the method of characteristics for anisen- 
tropic flow can be used to complete the computation of the downstream^ 
flow field. This method, however, is quite tedious numerically; and it 
may be desirable, in cases where great accuracy is not required, to 
establish the essential features of the downstream flow by a simple 
method. The weak-wave procedure to be described constitutes such a 
simplification. 

Before discussing the computation procedure, it is necessary to 
establish and define the order of magnitude of the various waves 
encountered. For this purpose, the interaction process shown in sketch 7 
is considered, wherein a shock wave is shown entering a nonuniform 
region from the upper left. The flow upstream of the shock may be 
continuous or it may contain discontinuities sufficiently small so that 
the criterion for neglect of all except the primary reflected waves for 
computing the shock form is satisfied. This criterion was discussed in 
the section General Equations. After the shock form is determined, the 
upstream flow field can be divided into a sequence of streamtubes in each 
of which all fluid quantities can be assumed to be constant. This sub- 
division is required for stepwise computation of the downstream flow 
field even if the upstream flow is continuous. The subdivision produces 
a wave pattern of the type shown in sketch 7. 

(M 
\n 
IM 

^J 
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wavee 
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CO 
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r waves 

Sketch. 7 

The shock wave can be considered to he a zero-order wave which, in 
passing through the nonunifqrm region, produces a sequence of reflected 
first-order waves. The integrated effect of the first-order waves on 
the strength of the shock wave can be of the same order of magnitude as 
the initial strength of the shock. A zero-order solution to the inter- 
action problem must therefore retain the integrated effect of first- 
order waves.  Similarly, each of the reflected first-order waves, whose 
initial strength is known from conditions just downstream of the shock 
wave, can be considered to be a primary weak wave passing through a 
region of nonuniform flow. Each first-order wave produces a sequence 
of second-order reflected waves, whose integrated effect on the strength 
of the first-order waves can be of the first order. To compute accu- 
rately the strength of the first-order waves as they emerge from the 
nonuniform flow field, it is therefore necessary to use equation (35) 
for each first-order wave (since p, X, and M are all variable 
upstream of these waves). The use of equation (35) to compute the 
strength of each first-order wave yields an approximate solution for 
conditions upstream of the next first-order wave. With these conditions, 
the strength •distribution of each succeeding first-order wave can be ' 
computed. 
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Sketch 8 shows the precise manner in which the second-order waves 
are taken into account by this pro- 
cedure. Conditions upstream of first- 
order reflected waves ah and fd 
are known from the shock form. The 
strength of the secondary reflected 
wave he is obtained from equa- 
tion (35), which gives the change 
in flow deflection of wave abV 
at b. The strength of wave be, 
in turn, determines conditions 
upstream of segment de, from which  
the strength of segments de and dg 
can be calculated by equation (35). 
By continuation of this procedure, 
the entire supersonic portion of the 
downstream flow field can be con- 
structed. The only approximation 

Sketch 8 made is that waves such as be do 
not significantly affect_the average 

flow variables upstream of primary wave segments such as fd; in other 

words, that the ratio -§§- is close to unity.  Since this ratio is 
ad 

very close to unity when all waves are inclined at the local Mach angle, 
the maximum error that can result from violations of this condition is 
equivalent to the error that could result from neglect of a single 
sequence of second-order waves (those nearest the shock wave), which, 
in turn, is approximately equivalent to the effect of a single first- 
order wave. In general, therefore, the use of equation (18) and its 
corollaries for shock waves and the use of equation (35) and its corol- 
laries for first-order waves will yield an accurate first-order solution 
to the interaction problem. 

In many problems, the foregoing procedure may yield higher accuracy 
than is required; and it may be desirable, for the sake of simplicity, 
to ignore second-order waves entirely. In such a case, the pressure 
ratio or flow deflection across each first-order wave is considered 
constant until it intersects another first-order wave or a shock wave. 
The neglect of second-order waves is permissible, if only a few such 
waves are generated. Thus, in sketch 7, the first three or four first- 
order waves generate only a few second-order waves before they emerge 
from the nonuniform region. In general, if the upstream Mach number 
varies over a small range, so that only a few streamsheets are required 
to break the flow into sufficiently small differences, then the neglect 
of second-order waves will result in negligible error. 

Effect of incident first-order waves. - If first-order waves other 
then those arising from the passage of a shock wave through the nonuniform 
region are present, then the computation of the downstream flow field by 

c- 
<u 
in 
0J 
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the wave method is feasible only if second-order waves are entirely- 
neglected. Even with, this approximation, however, the precise construc- 
tion of the flow is rather laborious because the intersections of waves 
with waves, and waves with streamlines occur at different positions. 
The situation locally is as shown in sketch 9, where a, b, and c may 
be first-order waves such'as those shown in sketch 3{a}; d, e, and f 
may be first-order reflected waves due to the passage of a shock wave* 

and g and h are stream- 
lines. The simplest computa- 
tion procedure consists in 
assuming that stagnation 
pressure and stagnation 
temperatures are constant 
in grids such as jkmn 
(rather than between stream- 
lines) . If the width of 
each grid is of the same 
order as the initially 
assumed streamtube width, 
then no appreciable error is 
introduced by this procedure. 
The streamlines can be 
ignored except insofar as 
they indicate the approximate 
local stagnation pressure 
and temperature, and each 
computation of properties in 
successive grid spaces is Sketch 9 

merely an application of the weak-wave relation (equation (l)) to the 
problem of interaction of two weak waves. Thus, if conditions in grid 
spaces 1, 2, and 4 are known from previous computations, conditions in 
region 3 are obtained from the relation 

£3 ~H = £3 £2 
H  Pi " 22 Pi 

(39) 

or, with the use of equation (l) for these pressure ratios, 

[l - t(M4)(X3 - X4)] [l + f (M1)(X4 - Xj] =   [l + f(M2)(X3 - X2)] [l - f (MxKXg - Xx)] 

which, when solved for "K^,  yields 

f(M2)X2[l - ffrxKXg - Xx)]  + f(M4)X4[l + f(M1)(X4 - Xx3] + f(Mx)[X2 - Xx + X4 - X-J 

f(M4)   [l + f{H±}(\ -\J]  + fCMg)   [l - f(M1)(X2 - Xjj] 
(40) 
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Since all waves are considered to be weak, let 

f(M2) « f(Mx) + 5f 

f(M4) » f(Mj + df 

If the steps are sufficiently small so that f(M)AX is small compared ^ 
with unity, then neglect of all except the lowest order terms in equa- LO 

tion (40) yields 

X3 - X2 - X4 - Xx (41) 

or 

x3 - x4 = x2 - xx 

which shows that the assumption commonly made for isentropic flow, 
namely, that the flow deflection remains constant across each first- 
order wave in interactions with other first-order waves, is also appli- 
cable when continuous or stepwise small variations in entropy and energy 
occur. 

With P3 and 73 taken equal to Pj_ and r±>  respectively, 

equations (4l) permit calculation of pressure and Mach number in 
region 3. The accuracy of this procedure depends on the negligibility 
of second-order reflections at the differential entropy and energy 
interfaces which, in turn, depends on the number of stream tubes required 
to divide the upstream flow into sufficiently small differences. If the 
upstream Mach number varies over a very wide range, use of the method 
of characteristics for anisentropic flow may be required in place of 
the first-order wave procedure if a high degree of accuracy is required 
downstream of the shock wave. 

Interaction of incident first-order waves with shock wave. - When 
first-order waves other than reflected waves due to passage of the shock 
are present, it is likely that some of these waves will intersect the 
shock wave in the region of nonuniform flow. This possibility was 
pointed out in the first section of the ANALYSIS, and discussion was 
postponed because the analysis neglecting the waves was valid if such 
intersections were few and for segments of the shock between such inter- 
sections. The local modification of shock strength required at these 
intersection points is derived with the aid of sketch 10, in which an 
incident wave of type Og is assumed to intersect the shock wave 
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DO 
cn 
ro 
•^3 

"between two successive reflected 
waves due to upstream flow vari- 
ations . At the intersection 
point, an additional reflected 
wave Of can arise which is 
due only to the interaction of 
Og with the shock wave and not 
to variation in the upstream / 
flow. The strength of Og at 
the intersection point is con- 
sidered known from computations 
of its interactions with all 
first-order waves in its path. 
Although a solution for the 
strength of the wave Of result- 
ing from the interaction with 
the shock wave can he obtained 
from equation (ll), the procedure 
is rather laborious, and it seems 
adequate for most purposes to 
neglect the reflected wave Of 
entirely. The assumption that 
no reflected wave of type Of 

occurs at the intersection is the same assumption that is made with good 
accuracy in the shock-expansion theory for two-dimensional airfoils. 
The conditions for which the Of wave is negligible compared with the 
incident wave are fully discussed in reference 6.  Specifically, the 
assumption is that in sketch 10 ^2 = X3 and p2 « p3, where p3 and 
X3 are known from the preceding step in which the formula for the 
intersection of two weak waves was used. The change in pressure ratio 
across the shock at point 0 transfers the shock to another integral 
curve of equation (18) (or fig. 2 or.4), which it follows until another 
intersection of this type occurs. The entire shock form is therefore 
determined to first order by its own propagation process and by first- 
order waves from external sources that intersect it. 

Sketch 10 

The accuracy with which the flow field can be calculated by neg- 
lecting all except first-order waves and the initial shock wave depends 
on the strength of the second-order waves that are neglected. An 
estimate of the error can be made by determining the strength of the 
second-order waves that are produced by the strongest first-order wave 
in the flow field. The errors in the computed pressures and flow angles 
should be comparable with the changes in pressure and flow angle across 
these neglected waves. 
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EXAMPLE 

As an example of shock propagation through supersonic shear regions, 
the form of a shock wave in a constant-pressure wake-type profile was 
computed. The profile assumed is shown in figure 6, together with the 
shock form traced with the aid of figure 2. The initial shock angle 
and Mach number were assumed to "be 34.0° and 3.0, respectively. The 
streamlines and first-order reflected waves were computed under the 
assumption that second-order waves were negligible and that consequently     ^ 
the flow deflection and pressure ratio across each first-order reflected     g 

wave remain constant. 

The minimum Mach number in the wake was taken to he 1.75, which 
yields a region of subsonic flow downstream of the shock, hut does not 
exceed the criterion for simple propagation. The region of subsonic 
flow was desired to illustrate an approximate procedure for handling 
such regions when they are imbedded in a supersonic stream. The pro- 
cedure used was as follows: In the region of subsonic flow, the wave- 
type calculation, of course, is not valid; but it was assumed that the 
pressure difference and flow deflection across each first-order wave 
was impressed on the imbedded subsonic region and that these pressure 
differences propagate through the subsonic region normal to the flow 
direction and emerge at the opposite sonic line in the form of waves 
with the same strength as the incident waves. This process appears 
reasonable if the extension of the shock through the region <P > <PS by 
means of the constant-pressure criterion is approximately valid. In 
that case, the shock form determines the first-order wave pattern which, 
in turn, determines the streamwise pressure gradient in the supersonic 
streamlines adjacent to the subsonic streamlines. The assumption that 
this pressure gradient is transmitted normally through the subsonic 
region is consistent with the expectation that curvature of the subsonic 
streamlines will be small if the curvature of the adjacent supersonic 
streamlines is small. 

With the assumption that no separation takes place downstream of 
the shock and that pressure is transmitted normally through the subsonic 
portion of the downstream shear layer, the interaction process is easily 
constructed in terms of the local Mach angles and flow angles. The 
resulting pattern of streamlines and first-order reflected waves is 
shown in figure 6 for the example chosen. The flow angle just downstream 
of the shock varied from 16.7° at the point of incidence to 19.2 near 
the center line. The pressure ratio across the shock varied from 3.12 
at the point of incidence to 2.72 near the center line.  Since the 
static pressure and flow angle are constant between any two reflected 
first-order waves (due to neglect of second-order waves), these figures 
represent the range of variation for the entire interaction region. 
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Although these variations in flow angle and pressure ratio are 
appreciable relative to the initial flow deflection and pressure ratio 
(about 15 and 13 percent, respectively), they are nevertheless fairly 
small and may be negligible for some purposes. The resulting variations 
in Mach number are indicated on figure 6. In the stream outside the 
shear layer the variation is only about 4 percent of the initial down- 
stream Mach number. These ranges of variation can, of course, be pre- 
dicted as soon as the form of the shock is known. The location of the 
variations, however, must be determined by constructing the first-order 
wave pattern. - 

The self-consistency of the method used to trace changes in pres- 
sure and flow angle through the subsonic streamtubes can be checked to 
some extent by comparing the change in streamtube area required by one- 
dimensional equations with the change actually obtained. :In the present 
case, the change in Mach number from 0.90 to 0.80 along the central 
streamtubes requires an area change of only about 3 percent, which is 
self-consistent with the area changes actually obtained within the error 
in tracing the streamlines. 

CONCLUDING EEMAEKS 

Analysis of the propagation of shock waves and first-order waves 
through nonuniform regions of supersonic flow showed that the strength 
distribution of an incident wave in such regions is determined by the 
upstream distribution of Mach number, flow angle, pressure, and specific- 
heats ratio provided that no waves other than the incident wave and 
reflected waves generated by its propagation are present. If the 
upstream flow can be divided into a sequence of small discontinuities, 
each incident wave can be considered to produce a sequence of reflected 
waves whose strength is an order of magnitude less than that of the 
primary wave. The integrated effect of these reflected waves, however, 
may be of the same order of magnitude as the strength of the primary 
wave. 

When the primary wave is a shock wave, a minimum upstream Mach 
number is found below which no physically realistic solution can be 
obtained with the equations for simple propagation. A sufficient con- 
dition is thereby obtained for the avoidance of flow separation, 
reversed flow, or other nonsimple phenomena. 

When first-order waves other than those reflected within the non- 
uniform region due to passage of a shock wave occur downstream of the 
shock, a first-order solution to the interaction problem is obtained 
by neglecting all second-order reflected waves. The accuracy of this 
procedure depends on the magnitude of the variations in fluid properties 
upstream of the shock and becomes less accurate when these variations 
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are large. If a high degree of accuracy is required, the flow down- 
stream of the shock can he constructed hy the method of characteristics 
for anisentropic supersonic flow. 

Although the wave analysis used hecomes invalid when a portion of 
the flow downstream of the shock wave hecomes subsonic, approximate 
procedures are given for computing the downstream flow field, as well 
as the shock form, when the curvature of the streamlines in the down- 
stream flow field is small. 

Lewis Flight Propulsion Lahoratory 
National Advisory Committee for Aeronautics 

Cleveland, Ohio, March 13, 1952 

LO 
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APPENDIX - SYMBOLS 

The following symbols are used in this report: 

f(M,r)   —^t- 

?j(j&>T>y)    pressure ratio across shock, p'/p (equation (2)) 

co       f2(M>T><f>) flow deflection across shock, (X' - X) (equation (3)) 
2 ' 

f3(M,r^)    
rM'    (equation (4)) 

-v/k'2 - 1 
f4(M,r^<P) d<p/dM    for shear flow (equation (25)) 

f
5(M,r><P) dq>/dM    for Prandtl-Meyer flow (equation (30)) 

M Mach number 

P stagnation pressure 

p static pressure 

X ratio of specific heats 

6        flow deflection across shock or weak wave (X1 - X)  (posi- 
tive value for compression, negative value for expansion) 

X       flow angle relative to reference direction (positive sense 
indicated where needed) 

<p        shock angle relative to local upstream flow direction 

<PS       value of q> for M' = 1.0 

For X, p, and M unprimed values represent conditions upstream 
of shock or weak wave and primed values refer to conditions downstream 
of shock or weak wave. 

Number subscripts for X, <p, p, y, M refer to values in cor- 
responding regions in accompanying sketches. 
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